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1. Abstract 
 The purpose of this paper is to test the Darcy's Equation and investigates, by 
simulations, how it's suitable to use in one-phase oil reservoir. To be used later in history 
matching procedure. 
 The model used is a flow in a saturated reservoir and this model similar to steady 
state two-dimensional (2-D) saturated porous media.   
 Reservoir engineering is based on the understanding of fluid flow in porous 
media. our aim to produce reliable code in matlab is relevant for the reservoir process (as 
simulator). To be used instant of traditional simulator, Black Oil Applied Simulator Tools 
(BOAST) which is written in fortran, and widely used in almost works concern reservoir 
simulation. 
Key words: Partial Differential Equation, Finite Difference, Reservoir, Simulation, 

Matlab. 
 
2. Introduction 
 Reservoir engineering is based on the understanding of fluid flow in porous 
media. We must have some data about permeability, porosity, saturation, and relative 
permeability for oil, for a range of process conditions. We used fluid flow model in 2-D:  
flow in a porous media.  The model used is a flow in a saturated reservoir and this model 
similar to steady state 2-D saturated porous media. The reservoir flow uses a potential 
formulation, and we apply this model to reservoir management (Landa, et al, 2000). 
 The reservoir modeling is a complex, multidisciplinary task. Once satisfactorily 
accomplished, the resulting model is used by operators and other interested parties for 
predicting performance under the range of operating and maintenance scenarios, for 
planning development strategies and for assisting production operations. (Parish, et al., 
1993) 
 Numerical simulation is widely used for predicting reservoir behavior and 
forecasting its performance. However, the mathematical model used in the simulation 
requires the knowledge of subsurface properties. Since petroleum reservoirs are relatively 
inaccessible for sampling, the measurable quantities at the well provide the essential 
information for reservoir description (Ewing, et. al., 1995). 
 The obtained data at the sampling locations can be divided into two categories: 
static and dynamic. Static data such as permeability and porosity do not evolve 
considerably during the reservoir lifetime. This can be considered the intrinsic identity of 
the reservoir. On the other hand, dynamic data obtained at wells, such as hydrocarbon 
production and pressure history, are changing and observable reservoir response resulting 
from human and/or perturbation, ultimately. These two categories of data lead to two 
different approaches for assessing reservoir properties. 
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 The first approach, commonly known as geometrical reservoir characterization, 
focuses on static data. This approach uses the spatial correlation of static data to predict 
the unknown parameters at unsampled locations. In the second approach, subsurface 
properties are estimated through an inverse modeling procedure, which matches the 
dynamic data, by comparing simulated production or pressure, to field data. Note: inverse 
modeling takes into account the fluid flow when assessing reservoir properties. Until now 
both approaches were used only for predicting geological models, while little attention 
was given to other reservoir engineering parameters. Moreover, geostatistical methods 
becomes a major research area after the mid 1980’s. Consequently, research in inverse 
modeling and automatic history matching lost its late 1970’s and early 1980’s vigor with 
few exceptions. Although a number of algorithms have been proposed before the mid 
1980’s, automatic history matching has not found widespread use yet. A major reason 
was the use of deterministic optimization methods, which can handle a limited number of 
parameters. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Reservoir description 

2. Previous Works 
 History matching is formulated depending on the process of determining 
unknown parameter values for a mathematical reservoir model, such as permeability and 
porosity, which give the closest fit of measured and calculated pressures. In principle, one 
would like an automatic routine for history matching, applicable to simulators of varying 
complexity, one that does not achieve a set of parameter estimates. 
 In the seventh decade of this century, various automatic and semiautomatic 
history matching techniques have been introduced. Jacquard and Jain (1965) presented a 
technique based on a version of the method of steepest descent. They did not consider 
their method to be fully operational, however, due to the lack of experience with 
convergence. Jahns (1965) presented a method based on the Gauss-Newton equation with 
a stepwise solution for speeding the convergence; but his procedure still required a large 
number of reservoir simulation to lead to a solution. Coats et al. (1970) presented a 
workable automatic history matching procedure based on least-squares and linear 
programming. Slater and Durrer (1971) presented a method based on a gradient method 
and linear programming. In their study they mentioned the difficulty of choosing a step 
size for their gradient method, especially for problems involving low values of porosity 
and permeability. They also pointed out the need for a fairly small range in their reservoir 
description parameters for highly non-linear problems.  

Earth layers 

Reservoir Pressure Oil 
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 Thomas et al. (1972) presented a non-linear optimization technique that 
automatically varies reservoir performance. Their method based on the classical Gauss-
Newton least-squares procedure. The method is a non-linear algorithm that will match 
both linear and non-linear systems in reasonable number of simulations. Wasserman et al. 
(1975) applied the material presented by two groups of scientists Chen et al. (1974) and 
Chavent et al. (1975) to practical reservoir problems. The pressure history matching 
algorithm used was initially based on a discretized single-phase reservoir model. 
Multiphase effects are approximately treated in the single-phase model by multiplying 
the transmissibility and storage terms by saturation-simulator run. Thus, all the history 
matching is performed by a “pseduo” single-phase model. The multiplicative factors for 
transmissibility and storage are updated when necessary. The matching technique can 
change any model permeability thickness value. 
 Dogru et al. (1977) presented methods of non-linear regression theory, which was 
applied to the reservoir history matching problem to determine the effect of erroneous 
parameter estimates obtained from well testing on the future prediction of reservoir 
pressures. Several studies on history matching have indicated that the well-test approach 
for determining the reservoir parameters often suffers from incorrect and nonunique 
parameter estimates. The factors that affect the parameter estimation can be classified as 
model errors, observability, measurement errors or noise, history time, test procedure, 
and optimization procedure.  
 Watson, et al. (1980) cleared that the aspect of the reservoir history matching 
problem that distinguishes it from other parameter estimation problems in science and 
engineering is the large dimensionality of both system state and the unknown parameters. 
As a result of this large dimensionality, computational efficiency becomes a prime 
consideration in the implementation of an automatic history matching method. In all 
parameter estimation methods, a tradeoff exists between iteration and the speed of 
convergence of the method. An important saving in computing time was realized in 
single-phase automatic history matching through the introduction of optimal control 
theory as a method for calculating the gradient of the objective function with respect to 
the unknown parameters. This technique currently is limited to first-order gradient 
methods. First-order gradient methods generally converge more slowly than those of 
higher order do.  
 Lee et al. (1986) presented an algorithm for an automatic history matching which 
developed from spline approximations of permeability and porosity distributions and 
from theory of regularization to estimate permeability or porosity in a 1-Phase, 2-D areal 
reservoir from well pressure data. The algorithm uses conjugate gradient method as its 
core minimization method. A number of numerical experiments are carried out to 
evaluate the performance of the algorithm. Comparisons with conventional (non-
regularized) automatic history matching algorithms indicate the superiority of the new 
algorithm with respect to the parameter estimates obtained. 
 
3. What is Reservoir Fluids? 

The velocity of the fluid in reservoir has the form (u(x,y), (x,y), 0). In other words, 
this means it is a 2-D steady state fluid flow. It is useful to be able to give a mathematical 
description of reservoir fluid.  
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 The compressibility of the fluid can be quantified by the divergence of the 
velocity. In 2-D the divergence of (u,v) is ux + vy. This measures how much mass enters a 
small volume in a given unit of time. To understand this, consider the small thin 
rectangular mass with density ρ and discretize ux + vy  

 Flow in and out of volume  

(dx dy T) = ρT dy (u(x+dx, y) - u(x,y)) dt+ ρT dx (v(x, y+dy) - v(x,y)) dt 

Divide by (dx dy T)dt and let dx and dy go to zero to get rate of change of mass per unit 
volume is ρ(ux + vy ).  

 

 

vx + uy = 0   vx - uy = 0 

Incompressible   Irrotational 

Figure2. Incompressible and irrotational 2-D fluid. 

A fluid with no circulation or rotation can be described by the curl of the velocity vector. 
In 2-D the curl of (u, v) is vx - uy. Also the discrete form of this gives some insight to the 
meaning of this. The circulation or momentum of the loop about the volume (dx dy T) 
with cross sectional area A and density ρ is  

momentum = ρA dy (v(x+dx, y) - v(x,y))- ρ A dx (u(x, y+dy) - u(x,y)). 

Divide by ρ (A dy dx) and let dx and dy go to zero to get vx - uy = 0 for no rotation.  
 
4. Applied to Saturated 2-D 1-Phase Reservoir 

 Consider a saturated reservoir which is to have at least one well. Assumed the 
region is in the xy-plane and that the oil moves towards the well in such a way that the 
velocity vector is in the xy-plane. At the top and bottom of the xy region we will assume 
there is no flow through these boundaries. However, assume there is a wide supply from 
the left and right boundaries so that the pressure is fixed. The problem is to determine the 
oil flow rates of well, location of well and number of wells so that there is still oil to be 
pumped out.  
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If a cell does not contain a well and is in the interior, then ux + vy = 0. If there is a well in 
a cell, then ux + vy < 0. The motion of the fluid is governed by an empirical law which is 
analogous to the Fourier heat law.  

Darcy's Law. (u,v) = -K(hx ,hy )  
 
where  

h is the hydraulic head pressure and 
K is the hydraulic conductivity which is constant for saturated regions.  

So, we have ux + vy = - (Khx )x - (Khy )y is zero or negative.  

NO FLOW THROUGH THIS SIDE 

 
NO FLOW THROUGH THIS SIDE 

Figure 3. 2-D  1-Phase reservoir  flow in porous media. 

5. Model 

 The model have a partial differential equation similar to that of the 2-D heat 
diffusion model, with have different boundary conditions. For fluid flow reservoir 
problems, they are either a given function along part of the boundary, or they are a zero 
derivative for the remainder of the boundary.  

6. Fluid Flow Reservoir Model  

 - (Khx )x - (Khy )y = )0()0( )0( )(
well)(

well)(0
,H,L,y x,y  

  x,y-R , 
x,y    ,

×∈
⎩
⎨
⎧

∈
∉

 

Khy = 0 for y=0 and y=H, and 

hx = h0 for x = 0 and x = L. 
 
7. Problem Treatment  
 In this problem the finite difference method used coupled with the SOR iterative 
method. For the (dx dy) cells in the interior. For the portions of the boundary where the 
derivative is set equal zero on a half cell (dx/2 dy) or (dx dy/2), some additional code 
inserted inside the SOR loop. For example, notice the model where hy = 0 at y = H on the 
half cell (dx dy/2). The finite difference equation and corresponding line of SOR code 
are, respectively, u = h:  

(xw,yw) 

well 
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-[(u(i+1,j) - u(i,j))/dx - (u(i,j) - u(i-1,j))/dx]/dx - [( 0 ) -(u(i,j) - u(i,j-1))/dy]/(dy/2) = 0  
 
utemp = ((u(i+1,j) + u(i-1,j))/(dx*dx) + 2*u(i,j-1)/(dy*dy))/(2/(dx*dx) + 2/(dy*dy)).  
 
u(i,j) = (1 -w)* u(i,j) + w*utemp.  
In the following implementations observe where the extra lines of code are that reflect 
these derivative boundary conditions.  

8. Implementation. 

 The fluid flow reservoir model uses the following parameters:  

L = 5,000  dx = h = 100  xw = (iw-1)h  h∞ = 100  
H = 1,000 dy = h = 100 yw = (jw-1)h K = 10. 

A single well with a flow rate of -1000 was used in the first numerical experiment. The 
first output graphs are plots of the hydraulic head pressure as a function of x and y. Note 
that the pressure near the well has dropped from 100 to about 30. The second experiment 
has two wells with the same flow rate. In this case the pressures are negative near both 
wells. This indicates that before any steady state solution was achieved, the wells went 
dry!  

9. Matlab Code for Fluid Flow in 2-D 1-Phase Saturated Reservoir in Porous Media.  
clear all 
K=10; 
well=-1000; 
iw=16; 
jw=6; 
eps=0.0001; 
nx= 50; 
ny=10; 
H=1000; 
w=1.7; 
 
 
u=ones(nx+1,ny+1)*100; 
 
h=H/ny; 
 
maxit=400; 
tol=eps*h*h; 
for m =1 : maxit 
    numi=0; 
    j= 1; 
    for i = 2 :nx 
        utemp= (( 2*u(i,j+1) + u(i+1,j) + u(i-1,j))*0.25); 
        utemp= (1-w)*u(i,j) + w*utemp; 
        error= abs(utemp - u(i,j)); 
        u(i,j)=utemp; 
        if (error < tol)  
            numi=numi +1; 
        end 
    end 
    for j = 2 : ny 
        for i = 2 : nx 
            utemp= (( u(i,j-1) + u(i-1,j) + u(i+1,j) + u(i,j+1))*0.25); 
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            if ((i==iw) & (j==jw)) 
                utemp= (( u(i,j-1) + u(i-1,j) + u(i+1,j) + u(i,j+1) + 
well/K)*0.25); 
            end 
            utemp= (1-w)*u(i,j) + w*utemp; 
            error= abs(utemp - u(i,j)); 
            u(i,j)=utemp; 
            if (error < tol) 
                numi=numi +1; 
            end 
        end 
    end 
    j= ny + 1; 
    for i = 2 : nx 
        utemp= (( 2*u(i,j-1) + u(i+1,j) + u(i-1,j))/4); 
        utemp= (1-w)*u(i,j) + w*utemp; 
        error= abs(utemp - u(i,j)); 
        u(i,j)=utemp; 
        if (error < tol)  
            numi=numi +1; 
        end 
    end 
     
    if (numi == (nx-1)*(ny+1)) break; end 
end 
 
 
> darcy2d 
> m 
        27         
> numi 
        539 
surf(u) 
contour(u) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  a. Surf 3-D     b. Contour 2-D 
 

Figure 4. Well at (16,6) with flow Rate 1000. 
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9. Result Analysis  
A two-dimensional, black-oil reservoir was modeled as shown in Figure 4. In this 
instance, to avoid the effects of the heterogeneity in understanding the problem from the 
conceptual point of view, the permeability and porosity were set constant throughout the 
reservoir. In this model, well (16,6) is producing at constant flow rates of 1000. Figure 5 
also shows the pressure in the reservoir as a function of time if we have two wells 
production (16,6) and (36,4) with flow rates of 1000. The pressure maps are shown here 
to illustrate what is going on in the reservoir and to help understand the results of the 
analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     a. Surf 3-D 
 
 
 

 

 

 

 

 
  b. Contour 2-D      c. Plot 2-D 

Figure 5. Wells at (16,6) and (36,4) with flow rates of 1000. 
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10. Assessment 

 This model has enough assumptions to rule out many real applications. For oil 
reservoir problems the soils are usually not fully saturated, and the hydraulic conductivity 
can be highly nonlinear and can vary with space according to the soil types. Often the 
soils are very heterogeneous, and the soil properties are unknown. The model may 
require 3-D calculations and irregular shaped domains. Fluid flow may often 
compressible and irrotational. The good news is that the more complicated models have 
many subproblems which are similar to model from heat diffusion, fluid flow in saturated 
2-D 1-Phase oil reservoir in porous media. 
11. Conclusions 

The main purpose of this work was to develop procedure for Darcy's equation for 
fluid flow. A second objective was to develop procedure to use as a simulator of reservoir 
to assess the reservoir behavior.  

The research resulted in the development of a procedure that allows us to 
integrate information from several sources to determine the pressure of reservoir. 

The components of the procedure developed during this work included: 
• A numerical reservoir simulator with the capability of computing the pressure as 

part of the solution process. The simulator was limited to two-dimensional 
reservoirs and oil system. We can expand the approach to three dimensions and to 
gas-oil-water systems. 

• Mathematical procedures to construct dynamic reservoir objects. 
• Using the finite difference algorithm to discrete the model which in form of a 

partial differential equation. 
The example of reservoir objects shown here were relatively simple, but the method 

is applicable to more complex cases. The method to compute pressure, as developed in 
this work, is relatively simple to implement when it is possible to have access to the 
numerical reservoir simulator computer code. Thus the complexity of modeling the 
reservoir became easy because it done in the simulation part. 
 

From the results of the numerical experiments performed during this research it is 
possible to conclude that the method can be utilized as a tool for reservoir 
characterization. The method seems to be more useful when the dynamic data set consists 
of a large number of measurements that are difficult to honor with the existing 
geostatistical approaches; this may be the case in mature fields that have already gone 
through a secondary recovery process and in which data have been gathered over many 
years. 
 

For further research, one of the main assumptions in this work is that the 
mathematical model (numerical reservoir simulator) can perform accurate predictions. 
Thus more research has to be conducted in the areas of modeling, especially in the area of 
well modeling in multiphase regimes, and in the area of controlling numerical dispersion 
in finite difference models. 
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